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Abstract—Memory safety is essential for programming low-
level system software. Over the past decades, numerous language-
level efforts, such as C dialects and Rust, have aimed to provide
strong safety guarantees for programmers. In this paper, we sys-
tematically study the landscape of language-level memory safety
and address two key questions: (1) What are the core design
principles underlying language-level memory safety? (2) What
are the primary challenges in achieving it? We taxonomize related
work along two dimensions: syntactic and semantic enforcement
mechanisms. Our analysis reveals that existing solutions remain
imperfect, often facing inherent trade-offs between safety and
performance. Guided by these findings, we outline promising
future directions to advance memory safety.

I. INTRODUCTION

Memory safety is essential for the programming of low-level
system software, such as operating system kernels and web
browsers. Over the past decades, numerous serious memory
safety vulnerabilities have affected system software, leading
to significant security breaches and data loss. Industry reports
indicate that approximately 70% of security vulnerabilities
stem from memory safety issues [1], [2]. Consequently, several
governments and organizations [3], [4], [5], have established
roadmaps for safe programming and reached a consensus that
memory safety is a mandatory requirement for future software
programming.

To improve and ensure memory safety, substantial efforts
have been made. These include StackGuard [6] for stack pro-
tection, Address Space Layout Randomization (ASLR) [7] and
Data Execution Prevention (DEP) [8] for exploit mitigation,
and Control Flow Integrity (CFI) [9] to prevent unauthorized
code execution. These techniques have been widely deployed
to mitigate memory safety vulnerability exploits. However,
memory corruption attacks are becoming increasingly sophis-
ticated and can bypass these defenses.

Another line of defense enhances security at the lan-
guage level. First, several features have been introduced in
the C and C++ standards. For instance, C99 [10] intro-
duced the restrict keyword to indicate that a pointer is
not aliased with any other pointer, which can help prevent

buffer overflows. C++11 [11] added several safety-related
features, such as constexpr for compile-time constant ex-
pressions and smart pointers (unique ptr, shared ptr,
and weak ptr) to manage pointer ownership and sharing for
enhancing temporal memory safety. Nevertheless, developers
must still exercise caution when writing code.

Second, various language dialects (with extensions) have
been proposed to enhance the memory safety of C and C++
programs. For example, Cornell’s Cyclone [12] enforces mem-
ory safety through region-based ownership and mandatory
bounds checking. Berkeley’s CCured [13] and Microsoft’s
Checked C [14] use pointer annotations to detect and prevent
unsafe memory operations.

Third, several entirely new programming languages have
been designed with memory safety as a core principle.
Mozilla’s Rust [15] restricts raw pointer usage and implements
a robust ownership and lifetime management system. Google’s
Go [16] limits pointer arithmetic and relies on a garbage
collector for automatic memory management.

These language-level solutions appear promising and have
demonstrably reduced the risk of memory safety bugs. For
example, the Android OS adopted Rust starting in Android
12 [17], and reported a dramatic decrease in memory safety
vulnerabilities [18]. However, memory safety issues are still
not entirely eliminated, even in Rust.

In this paper, we review language-level security techniques
and focus on the key mechanisms that underpin them. We
discuss the challenges in achieving memory safety guarantees
at the language level, and classify existing approaches accord-
ing to how they address spatial (e.g., out-of-bounds accesses)
and temporal (e.g., use-after-free and double-free) memory
safety. Specifically, we examine how language extensions
enforce spatial and temporal memory safety through syntac-
tic enforcement, compile- and run-time checks, ownership
models, and type systems. We analyze the trade-offs these
techniques make between safety, performance, expressiveness,
and compatibility with legacy code.

The remainder of this paper is organized as follows. Sec-
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Fig. 1: Taxonomy of language-level memory safety mechanisms.

tion II provides a high-level overview and taxonomy of the
underlying techniques. Section III discusses the syntactic de-
sign principles. Sections IV and V present detailed descriptions
of techniques for addressing spatial and temporal memory
safety. Section VI highlights the security enforcement in type
systems and runtime. Section VII discusses the implications
of these approaches and Section VIII depicts the future work
directions in this area. Last, Section IX concludes the paper
by summarizing key insights.

II. TECHNIQUE TAXONOMY AND OVERVIEW

Memory safety is critical for system programming. It
primarily encompasses two dimensions: spatial safety and
temporal safety. Spatial safety refers to the prevention of
out-of-bounds memory accesses. Temporal safety ensures that
memory is not accessed after it has been deallocated (e.g.,
use-after-free or double-free). Ideally, language-level safety
should provide safety guarantees at the language level. In
such a system, the language itself is responsible for achieving
spatial and temporal safety by design, thus guaranteeing these
properties irrespective of the programmer’s intent or mistakes.

Achieving memory safety remains a significant challenge
for systems programming languages, including C/C++, C
dialects (e.g., Cyclone, CCured, and Checked C), and Rust. C
and C++ grant programmers direct control over memory man-
agement. This enables high performance, but places the full
burden of memory safety on developers. Over time, various
security-enhancing features have been introduced into C/C++
language standards (e.g., C++11) to mitigate these risks. In
contrast, C dialects extend C with the goal of eliminating
memory vulnerabilities by design. Rust, on the other hand,
enforces strict memory safety guarantees through language-
level mechanisms such as ownership and borrowing.

In this paper, we systematically study language-level mem-
ory safety and aim to understand how far existing language
improvements are from providing comprehensive security
guarantees. To this end, we focus on mapping the landscape
of underlying security techniques employed by systems pro-
gramming languages. We examine the challenges they face and
discuss their strengths and limitations, highlighting the gap
between different enforcement mechanisms and the classes
of vulnerabilities they target. For this goal, we collected

relevant literature from top-tier security and programming
language conferences spanning from the 1990s to the present.
We then applied a snowballing methodology, reviewing the
references of key papers to identify additional related work.
This iterative process culminated in nearly 50 papers that form
the foundation of our systematization.

Through this systematization, we taxonomize language-
level memory safety from two key perspectives: syntactic and
semantic enforcement mechanisms, as illustrated in Figure 1.
Syntactic enforcement refers to the use of explicit language
constructs (such as type annotations) and the disabling of
unsafe operations (e.g., unrestricted pointer arithmetic), which
are designed to prevent memory errors at the source level.
Semantic enforcement, by contrast, relies on deeper language
semantics (such as compile-time type checking, ownership
rules, or runtime memory access policies) enforced by the
languages to guarantee spatial and temporal safety.

The remainder of this paper first presents syntactic enforce-
ment mechanisms in systems languages. Then, we discuss
semantic enforcement approaches.

III. SYNTACTIC ENFORCEMENT

In this section, we explore the role of syntactic enforcement
in systems programming languages. A programming language
serves as the interface between programmers and the under-
lying system. Syntactic enforcement refers to the introduc-
tion of explicit security-related language constructs (such as
type annotations) and the disabling of risky operations (e.g.,
unrestricted pointer arithmetic). These mechanisms regulate
the channels through which programs interact with low-level
system resources and thus constitute the first line of defense
in the memory safety landscape.

Syntactic enforcement primarily centers on pointer types
and management. A huge number of C/C++ projects have
demonstrated that pointers are an effective and efficient
means of manipulating low-level memory resources. However,
pointer operations are also a common source of memory safety
vulnerabilities. Specifically, spatial safety is often violated
through pointer arithmetic and offset computations, while
temporal safety is frequently compromised by the use of
uninitialized or dangling pointers.



TABLE I: Comparison of Different Security Enforcement Approaches

Category Language/Dialect Syntactic Enforcement Spatial Safety Temporal Safety

New Security Enforcement C99 restrict

C++11 constexpr smart pointer

C Dialects

Cyclone annotation full pointer regions

CCured annotation full pointer

Checked-C annotation full pointer key lock

SoftBounds+CETS disjoint metadata key lock

New Language Rust
disable pointer derefer

arithmetic
unsafe boundary

full pointer ownership
borrowing

C/C++ Security Standards. In C and C++, language syntax
is defined and maintained by their respective standardization
committees [19], [20]. New language standards are typically
released every few years, guiding the evolution of the lan-
guages. A significant milestone was the introduction of smart
pointers in C++11, namely unique ptr, shared ptr,
and weak ptr. Smart pointers aim to replace raw pointers
and help developers write safer code. A unique ptr rep-
resents exclusive ownership of a resource and automatically
deallocates it when going out of scope. A shared ptr
enables shared ownership through reference counting, while a
weak ptr observes a resource without affecting its lifetime.

Progress in C Dialects. C dialects, such as Cyclone, CCured,
and Checked C, are variants of C that introduce type anno-
tations to support memory safety. These syntactic extensions
enable compilers to infer and verify pointer types at compile
time, facilitating static type checking and enforcement. As a
result, pointers are classified into distinct categories (e.g., safe
vs. unsafe, or region-annotated types). For instance, CCured
categorizes pointers into three kinds: SAFE pointers, whose
usage is statically verifiable and disallows arithmetic; SE-
QUENCE pointers, which permit pointer arithmetic for array
access but require runtime bounds checks; and DYNAMIC
pointers for all other cases, which are protected by extensive
runtime checks. Conversions between different pointer types
are strictly checked and enforced by the compiler. To reduce
the manual burden of annotation, CCured employs static anal-
ysis to automate this process. Consequently, approximately
97% of pointers can be automatically classified. For the few
remaining pointers whose safety cannot be statically verified,
rigorous runtime checks are enforced.

Safety Guarantees and Side Effects. Rust is one of the few
widely adopted systems programming languages that provides
strong memory safety guarantees without relying on garbage
collection. Its syntax system introduces a safety boundary
through the unsafe keyword. Code within safe regions is
guaranteed by the compiler to be free of memory safety vio-
lations. This is a foundational innovation in the Rust language
design. Within safe Rust, raw pointers are fully restricted.
They can only be created and used as references, and other
operations (such as dereferencing, arithmetic, or comparison)

are disallowed. This syntactic discipline effectively eliminates
spatial violations and significantly reduces the risk of dangling
pointers.

However, this strictness also introduces practical limitations.
Safe Rust prohibits pointer-intensive idioms, such as pointer-
based doubly linked lists or low-level memory traversal (e.g.,
for I/O streaming buffers). As a compromise, Rust allows
unsafe blocks, where risky operations (including raw pointer
manipulation, union accesses, and calls to other unsafe func-
tions) are permitted. The unsafe mechanism thus represents
a deliberate trade-off between safety and expressiveness.

Recent studies [21], [22] have illustrated that unsafe re-
gions are the primary sources of memory safety vulnerabilities
in Rust. Some highly critical vulnerabilities have even been
discovered in the Rust standard library, for example, in string
handling routines. These findings indicate that the unsafe
keyword can introduce security holes, and developers must
exercise extreme caution when writing code within unsafe
blocks. Another security concern is the potential abuse of
unsafe. Because direct pointer manipulation can yield per-
formance benefits, many low-level systems projects opt to use
unsafe extensively instead of adhering to safe Rust.

Other New Languages. Beyond Rust, several newer lan-
guages, such as Go, Zig [23], Odin [24], and V [25], have
been designed with memory safety in mind. These languages
introduce syntactic features that differ from Rust’s approach.
Most adopt garbage-collected memory models, which effec-
tively address temporal safety but incur runtime overhead
and reduced control. We discuss garbage collection and its
implications in Section V.

IV. SPATIAL SAFETY

Spatial memory safety guarantees that all memory accesses
are confined within the legitimate boundaries of the target
object. Violations of this property are the root cause of
canonical vulnerabilities such as buffer overflows, which have
historically plagued software systems. The key challenge in
achieving language-level spatial safety lies in accurately iden-
tifying the boundaries of memory objects. Based on where
and how bounds information is stored and managed, existing
approaches can be broadly categorized into three classes:



disjoint metadata, fat pointers, and hardware-assisted pointer
extensions. We detail each below.

A. Disjoint Metadata

The disjoint metadata approach stores pointer bounds infor-
mation in a separate memory region, commonly referred to as
shadow space. This shadow space is logically decoupled from
the program’s main memory layout. In this model, a pointer
p does not directly hold the target memory address. Instead,
it serves as a handle to a corresponding shadow pointer p′ in
shadow space, which contains both the actual memory address
and associated bounds metadata.

When performing pointer arithmetic (e.g., p + offset), the
runtime system uses p′ to retrieve the base address and bounds
of the underlying object. It then checks whether the computed
offset falls within the valid range. If the check passes, the real
memory address is derived as p′addr + offset; otherwise, the
access is rejected as out-of-bounds.

Approaches such as SoftBound [26] employ disjoint meta-
data to detect out-of-bounds accesses. This shadow space
based design offers significant advantages. It is agnostic to the
underlying memory model and can be applied to languages
like C/C++ without requiring source code modifications,
thereby preserving strong compatibility.

Nevertheless, this design has notable limitations. First,
given a pointer p, the system must locate its corresponding
shadow entry p′. When the metadata table is small, the lookup
overhead is low; Then as the pointer number increases, the
overhead grows significantly. Although several works [26],
[27] have proposed tree-based or hash-based indexing struc-
tures to improve performance, the overhead remains non-
negligible. Second, the shadow metadata is globally shared.
The concurrent accesses to the space require synchronization
(e.g., via mutexes) to prevent data races. Thus, it can degrade
performance in multi-threaded programs.

B. Fat Pointer

In contrast to the disjoint model, the fat pointer approach
embeds bounds metadata directly within the pointer rep-
resentation itself. This transforms a traditional single-word
raw pointer into a multi-word structure, i.e., ‘fat pointer’.
To enforce spatial safety, a fat pointer typically comprises
three fields: the base address of the memory object,
its bounds (i.e., size), and an offset indicating the cur-
rent position relative to the base. When a fat pointer p =
⟨base, bounds, offset⟩ undergoes arithmetic (e.g., p + ∆), the
system checks whether offset +∆ satisfies 0 ≤ offset +∆ <
bounds. If not, the operation is flagged as out of bounds.

Most C dialects (such as Cyclone, CCured, and Checked
C) rely on fat pointers to prevent spatial violations. How-
ever, their adoption typically requires extensive source code
modifications to replace raw pointers with custom fat pointer
types, limiting practical deployability. Additionally, modern
languages also utilize fat pointers. in Rust, slices are repre-
sented as fat pointers, which inherently prevent out-of-bounds
accesses.

Despite their safety benefits, fat pointers introduce per-
formance overhead. Expanding a pointer from one word to
two or three words increases memory footprint and affects
calling conventions. In particular, function arguments that are
fat pointers cannot be passed entirely in CPU registers for
optimizations. This forces spilling to the stack and degrades
performance. Recent works [28] have proposed ‘thin’ pointer
optimizations to reduce fat pointer size. However, since essen-
tial metadata (base and bounds) must still be preserved, the
scope for such optimizations is inherently limited.

On the concurrency scenario, fat pointers have an advantage
over global shadow tables. Because each fat pointer carries its
own metadata, accesses are inherently thread-local and do not
require global synchronization, making them naturally thread-
safe.

C. Hardware-Assisted Pointer Extension

CHERI [29], [30], [31] is a hardware-assisted capability
based architecture available on several platforms, including
RISC-V and ARM. CHERI extends traditional pointers, nor-
mally one machine word, into two-word capabilities. The
first word encodes a capability structure containing the base
address, length (bounds), permissions, and other metadata;
the second word holds the current offset (i.e., the effective
address). At runtime, CHERI works like fat pointers but with
its own instructions for accessing its capabilities.

Due to hardware support, CHERI enforces spatial safety
with significantly lower overhead than software-based fat
pointers. However, it comes with several limitations. First,
CHERI requires specialized hardware and is only available on
select architectures. Second, it is not compatible with existing
C/C++ binaries while providing protection. Third, CHERI
currently focuses primarily on heap-allocated memory and
does not completely support stack memory. This limitation
stems from the high frequency and dynamic nature of stack
allocations, which strain CHERI’s metadata management re-
sources.

V. TEMPORAL SAFETY

Temporal memory safety ensures that memory objects are
not accessed after they have been deallocated. Violations of
this property commonly manifest as use-after-free and double-
free bugs. The key challenge in enforcing temporal safety
at the language level lies in tracking the allocation status
of memory objects, i.e., determining whether a given object
is currently allocated or has already been freed. This is
particularly difficult because when an object’s status changes
(e.g., from allocated to freed), existing pointers pointing to it
remain unaware of this change. At the language level, tem-
poral safety is typically achieved by imposing strict controls
over the entire lifecycle of memory objects. We systematize
existing approaches into four dominant technical paradigms:
garbage collection, ownership-based management, metadata-
based management, and hardware-assisted validation.



A. Garbage Collection

Garbage Collection (GC) is a memory management tech-
nique that automatically reclaims memory no longer reachable
from living program variables. It enforces temporal safety by
delegating deallocation entirely to the runtime system, ensur-
ing that memory is freed only when it is provably unreachable.
Consequently, dangling pointer accesses (i.e., attempts to use
memory after deallocation) are inherently prevented.

GC has been widely adopted in modern managed lan-
guages such as Go, owing to its simplicity and strong safety
guarantees. However, it has notable limitations. First, GC is
unsuitable for many low-level programming contexts, such
as operating systems and language runtime implementations,
which require precise, deterministic control over memory
layout, and also their own memory allocation and deallocation
management. Second, GC introduces runtime overhead and
non-deterministic pause times during collection cycles, which
can be problematic for performance-sensitive or real-time
applications.

B. Ownership-Based Allocation Management

Several systems programming languages avoid garbage col-
lection in favor of explicit and compile-time memory manage-
ment. Notable examples include Cyclone and Rust. Cyclone,
a safe dialect of C, employs a region-based memory model to
enforce temporal safety. Memory is partitioned into regions,
each with a designated owner responsible for allocating and
deallocating all objects within it. When a region goes out of
scope, its owner deallocates the entire region, ensuring no
dangling references persist. While Cyclone pioneered the use
of ownership for temporal safety, its coarse-grained region
model limits expressiveness and practical applicability.

Rust adopts a more fine-grained ownership system based
on compile-time lifetime tracking. Each memory object has
a single owner, and ownership may be transferred (moved)
between variables. When the owner goes out of scope, the
value is automatically deallocated. To support shared or tem-
porary access without transferring ownership, Rust enforces
strict borrowing rules. At any time, there can be either one
mutable reference or any number of immutable references,
but not both.

C++11 also introduced ownership based pointer manage-
ment, i.e., smart pointers. unique ptr manages the life-
time of a memory object, ensuring that it is deallocated
when the pointer goes out of scope. For shared ptr and
weak ptr, C++ applies auto reference counting (garbage
collection) to track the number of shared owners.

Different from C++ smart pointers, Rust’s ownership model
is more strict and does not rely on GC for memory man-
agement. The Rust ownership model is highly effective. It
eliminates entire classes of temporal memory bugs without
runtime overhead, as all checks are performed statically at
compile time. Moreover, it enables fine-grained control over
resource management, often improving performance compared
to GC.

However, the uniqueness constraint of ownership compli-
cates certain common programming patterns. For instance,
pointer-intensive data structures like doubly linked lists in-
herently violate Rust’s aliasing rules. To implement such
structures, Rust programmers must resort to raw pointers
within unsafe blocks. As discussed in Section IV, the
use of unsafe bypasses the compiler’s safety guarantees,
potentially reintroducing temporal (and spatial) vulnerabilities
and undermining overall system security.

C. Metadata-Based Allocation Management

Metadata can also be used to track the temporal status of
memory objects at runtime. A common technique is the key-
lock mechanism. When a memory object o is allocated, a
unique lock (e.g., a random integer) is associated with it.
Any pointer p that refers to o stores a corresponding key in its
metadata, where key = lock. Upon deallocation, the object’s
lock is invalidated (e.g., cleared). At dereference time, the
runtime compares the pointer’s key with the current lock
of the target object. Access is permitted only if key == lock;
otherwise, it is rejected as a temporal violation.

The C dialect Checked C [32] adopts this key-lock mech-
anism to enforce temporal safety. Experimental results show
that it can detect and report temporal errors at runtime with low
overhead. Similarly, the disjoint-metadata system CETS [33]
also implements key-lock validation. However, as Zhou et
al. [32] demonstrated, CETS incurs significantly higher per-
formance overhead compared to Checked C, primarily due to
its global metadata table and synchronization requirements.

D. Hardware-Assisted Validation

Hardware extensions can also help enforce temporal safety.
CHERI implements lazy address reuse. When memory is
deallocated, its address is not immediately returned to the
allocator but is instead marked as invalid in hardware. Subse-
quent accesses to such addresses are blocked by the capability
system, preventing use-after-free exploits.

Another hardware-based approach is Pointer Authentication
(PAC), used in ARM. PAC embeds a cryptographic signature
(or ‘tag’) into the upper bits of a pointer. This tag is verified
on every indirect jump or load/store operation. If the tag does
not match the expected value (e.g., because the pointer points
to freed memory), the access is aborted. While originally
designed for control-flow integrity, PAC can be adapted to
detect certain temporal violations by binding pointer validity
to object lifetime.

Both CHERI and PAC shift part of the temporal safety
burden to hardware, reducing software overhead. However,
they require specialized architectures and offer only partial
coverage (e.g., CHERI currently lacks full stack support),
limiting their applicability in heterogeneous or legacy envi-
ronments.

VI. TYPE AND RUNTIME ENFORCEMENT

The type system is a cornerstone of programming languages,
enabling correctness checks at compile time. Although C and



C++ are statically typed, they are not type-safe. First, they
introduce void* to facilitate programming. However, this
convenience comes at the cost of erasing the type information
of the pointed object. Second, C/C++ permit low-level pointer-
based casting. For example, in the code snippet ‘char* p1;
... int* p2 = (int*)p1;’, the same memory region
is interpreted as char typed when accessed via p1, and as
int typed via p2. Third, pointers are treated as raw addresses
i.e., unsigned integers. C allows conversion between pointers
and integers, which also erases type information. Such type-
punning through pointer casts may lead to memory accesses
with mismatched type sizes, often resulting in spatial memory
safety violations. Similarly, unions in C/C++ allow multiple
types to alias the same memory location, enabling type con-
fusion and undefined behavior. Consequently, the C/C++ type
system is fairly fragile, making it difficult to perform rigorous
type inference and enforcement. As a result, many memory
access errors cannot be reliably detected and prevented at
compile time.

C dialects, which extend C with additional type qualifiers
and restricted pointers, build their safety mechanisms atop
this inherently weak and permissive type system. This fragile
foundation poses significant challenges for constructing robust
and strict type enforcement. Consequently, such dialects turn
to runtime checks to guarantee memory safety.

In contrast, the modern systems language, Rust, adopts a
strict type system that severely restricts implicit or unsafe type
conversions, permitting only explicit ones. Built upon this type
discipline, Rust further performs compile-time ownership and
lifetime analysis, enabling developers to detect and eliminate
most memory safety bugs before execution.

Furthermore, Rust employs runtime enforcement where
necessary. For instance, it performs bounds checking on the ac-
cesses of slices, which are fat pointers. Rust supports dynamic
dispatch through trait objects, which are implemented using
virtual function tables (vtables). Crucially, Rust enforces cor-
rect trait implementations at compile time, preventing runtime
errors caused by missing or mismatched method definitions.

VII. DISCUSSION

In this paper, we systematically summarize key memory
safety paradigms along two primary dimensions: syntactic
and semantic enforcement. Syntactic enforcement concerns
language-level constructs that directly restrict unsafe opera-
tions, e.g., disabling pointer arithmetic or requiring explicit
type annotations in safe code. Semantic enforcement, on the
other hand, relies on compile- and runtime analyses grounded
in program semantics, such as metadata propagation, owner-
ship and lifetime tracking, and type inference and validation.

Over the past decades, significant efforts have been made
to address memory safety in C/C++ standards, C dialects, and
new languages like Rust. Guided by this landscape, we answer
two critical research questions:

(1) What are the key technical paradigms and inherent
trade-offs in achieving memory safety? We break down the
underlying techniques and explore their pros and cons. Table II

presents a comprehensive comparison of these mechanisms
regarding their limitations. In spatial safety, disjoint metadata
based approaches have strong compatibility with existing
C/C++ code, but they are not very efficient. Fat pointers are
more efficient, but existing fat pointer based solutions require
the modification of the existing code. In temporal safety, GC
is automatic, but it is not suitable for all applications and
has performance concerns. Ownership based approaches are
fast and deterministic at compile time, but they cannot handle
pointer-based data structures, posing side efforts (e.g., the
introduction of ‘unsafe’).

(2) How far have we come in providing language-level
safety guarantees? We define such a guarantee as follows:
regardless of how a programmer writes code, the underlying
language automatically prevents all memory corruption vul-
nerabilities. Our analysis reveals that no existing language
is perfect. First, C++ introduced smart pointers to mitigate
memory safety issues, but their opt-in nature and coexistence
with raw pointers limit their effectiveness. Second, C dialects
attempt to enforce safety using fat pointers, which require
extensive source-code annotations and manual refactoring.
Moreover, fat pointers incur runtime overhead due to the
extra memory needed for metadata storage. These approaches
essentially try to construct a robust type system on top of
C’s inherently fragile foundation, a fundamentally challenging
endeavor.

Finally, Rust stands out as the only widely adopted systems
language that provides a solid and strictly enforced type
system without GC. Through compile-time ownership and bor-
rowing rules, Rust eliminates most memory safety bugs before
execution. However, to enable and accommodate low-level
operations that cannot be statically verified, Rust introduces
the unsafe keyword. Code within unsafe blocks bypasses
the compiler’s safety checks and memory safety guarantees.
Empirical studies [22], [34] have shown that unsafe code is
a primary source of memory vulnerabilities in Rust programs,
a direct consequence of the trade-offs necessitated by its
otherwise strict enforcement model.

VIII. FUTURE WORK

Guided by the above discussion, several promising direc-
tions for future work emerge.

Enhancing Legacy C/C++ Programs. Despite the growing
adoption of Rust for systems programming, a vast amount
of legacy C/C++ code remains in use. One approach is to
automatically translate C/C++ code into safe Rust. The C2Rust
project [35], [36], [37], [38] represents a notable step in this
direction. However, much of the translated code ends up in
unsafe blocks due to the expressiveness gap between C
and Rust’s safety model. Consequently, developing translation
techniques that minimize or eliminate unsafe usage is a
compelling research goal.

An alternative is to define a safe subset of C/C++ [39],
[40] that retains most of the original syntax while integrating
Rust-like safety mechanisms, such as ownership, borrowing,



TABLE II: Comparison of Memory Safety Mechanisms

Mechanism
Technique

Runtime
Pros Cons

Category Cost

Spatial Safety

Fat Pointers Medium • Inherently thread-safe
• Efficient for local access

• Breaks binary ABI
• High memory footprint
• Degrades cache locality

Disjoint Metadata High • Preserves binary compatibility
• Agnostic to memory model

• High lookup latency
• Requires synchronization for multi-threading

Hardware Low • High efficiency via hardware
acceleration

• Requires specialized hardware
• Incompatible with existing binaries

Temporal Safety

Garbage Collection Variable∗ • Simple for developers
• Strong safety guarantees

• Non-deterministic pauses
• Introduces runtime overhead

Ownership None • Zero-cost abstraction
• Deterministic resource management

• Steep learning curve
• Restricts data structures
• May force ‘unsafe’ usage

Key-Lock Medium • Deterministic detection
• No GC pauses

• Memory fragmentation
• Runtime check overhead on every access

Hardware Low • Minimal software burden
• Fast validation

• Hardware dependency
• Partial coverage (e.g., stack issues)

* Variable indicates that runtime overhead fluctuates between negligible cost during allocation and significant latency spikes during non-deterministic collection cycles

and restricted pointer arithmetic. This idea is already under
active discussion within the C++ standards committee [41].

Eliminating or Mitigating Rust unsafe Blocks. Since
unsafe code is a known root cause of memory safety
vulnerabilities in Rust, reducing its footprint is crucial. One
direction is to design new languages that provide strong safety
guarantees without any unsafe escape hatches. Another
is to sandbox unsafe code: even if unsafe operations are
permitted, their effects are confined within a secure boundary,
ensuring that memory safety is preserved at the system level.

Unsafe Code Detection and Repair. Automated detection
and repair of unsafe code usage is another important avenue.
Unsafe code is often buried deep within libraries, and its
misuse may only manifest in client programs. Static analysis
alone may capture problematic usages. Therefore, developing
fine-grained, context-aware tools for detecting unsafe code and
suggesting repairs is essential [37], [42].

AI-Assisted Code Security Analysis and Enhancement. Ar-
tificial intelligence (AI) shows great promise in understanding
code semantics and assisting developers. AI models can help
identify unsafe code patterns, suggest safe alternatives, and
even automate refactoring to eliminate unsafe blocks. AI-
assisted code analysis may significantly improve the efficiency
and scalability of memory safety assurance, making it a highly
promising direction for future research.

IX. CONCLUSION

C and C++ are widely used low-level programming lan-
guages. They provide direct access to memory and enable
programmers to write high-performance code. However, they
introduce significant spatial and temporal memory safety
challenges. Over the past decades, various language-level

memory safety mechanisms have been proposed and deployed
to address these issues, aiming to provide strong safety guar-
antees for programmers. These mechanisms include syntactic
enforcement, strict type systems, pointer annotations and re-
strictions, and runtime checks.

Through a systematic study of existing work, we find
that current solutions remain imperfect, often facing inherent
trade-offs between safety and performance. We examine the
underlying techniques of these approaches and highlight the
key challenges they encounter. By analyzing the limitations
of existing efforts and outlining potential future directions, we
hope our survey and analysis can facilitate further research
and inspire the design of effective and efficient memory-safe
system languages.
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